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The propagation of a plane wave and its interaction with an obstacle in 

elasto-plastic media has been investigated by Olisov. Kaliski and 

Osiecki [I], by Perzyna 121, and by Liakhov and Poliakova [31. In these 

investigations a linear or piecewise linear compression diagram was used 

to.approximate to the law of loading. In L1.21, moreover, the hypothesis 

of constancy of density during unlonding was accepted. 

The Present paper shows that the problem of interaction of a plane 

wave and an obstacle can be solved comparatively simply if a power-law 

relation between stress and strain is assumed during loading and if the 

density within a particle is assumed constant during unloading. Such an 

approximation constitutes a close description of experimental results 

for a wide range of stresses. 

The paper also studies the parameters of an incident wave in relation 

to a given external influence, as well as the parameters of a wave re- 

flected from an absolutely rigid or massive movable obstacle. 

The results can be applied to the study of wave phenomena in soft 

soils. 

1. Description of the medium. In order to represent the medium 

we adopt the model proposed for soils by Cirigorian [sI. In the case of 

a plane wave the conditions of coaxiality of the tensors of stress and 

rate of strain are fulfilled by virtue of synxnetry, and to specify the 

medium there remain the following two conditions: 
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a) the law of volume compression 

5 = 5 (0) 

b) the plasticity condition [6] 

(1‘1) 

j 5,y - ; 'i / = - t/l5 $- IH (1.2) 

Ilere ux, 13y are components of stress; o is the mean stress, 0 is the 
volume compression, m and m' are positive constants. 

We shall confine our attention in this paper to phenomena which take 
place under conditions of plastic deformation. 

The law of volume compression is assumed to be different for loading 
and for unloading (Fig. 1): 

o(e) = fl(0) for da/dt > 0 (the line ARC) (1.3) 

e = const, u is indeterminate for da/dt < 0 (the straight line I%?) 

If we confine our attention to a plane wave, then we need only con- 
sider the law of uniaxial compression, which can be derived from condi- 

tions (1.2) and (1.3). 

Suppose that the direction of the x-axis coincides with the direction 
of propagation of the wave. Assuming the stress to be compressive, we 
have 

It follows from (1.3) (for the case of loading) that 

Gs = (l$ p)rl (0) -7 s f(O) 

In the case of uniaxial defo~ation Ed = Ed = 0, 0 = E*. Then, 
finally 

L. 3 Propagation of a plane wave generated by an external 
influence. Suppose that a uniform compressive stress is given as a 
function of time at various points in some plane, k a result waves will 
start to propagate from these points in both directions. Let us investi- 
gate one of these waves, taking the x-axis as the direction of propaga- 
tion. We shall adopt a system of Lagrangean coordinates (h, t), taking 

z(h, tl = h +- U(k, t), tz (h, 0) = 0 (2.1) 
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Here X(/I, t) is an Euler coordinate, 

a particle. 

G.V. Rykov 

u(h, t> is the displacement of 

The law of &axial deformation will be taken in the form (1.4) for 

loading. For unloading we shall assume that sX = const. In accordance 

with well-known experimental results we 

assume that with repeated loading the stress 

within a particle increases without increase 

in density (i.e. "along the vertical", Fig. 

1) until the former maximum stress is 

reached (point B). Further increase in stress 

follows 

now on, 

propose 

stated, 

elastic 

Until 

Fgf. 1. Fig. 2. 

the loading branch of the compression diagram (segment BC). From 

for simplicity, we shall write o for uX and E for E,. Since we 
to consider only the plastic state, we can apply the law as 

excluding the initial portion of the curve corresponding to the 

stage. 

the application of the external load the medium was in an un- 

disturbed state. We shall assume that the external load is applied in- 

stantaneously, and that thereafter its absolute magnitude decreases with 

time. 'lhese assumptions concerning the nature of the external load are 

essential for the method of solution proposed here. Moreover, they de- 

pict a loading which is typical of that applied by explosions. It is 

natural to expect that a shock-loading will generate a wave with a shock- 

front. 'lhe coordinate of the front (Fig. 2) will be denoted by he, and 

the coordinate of the plane with a given stress, by h,. Particles with 

coordinates h, for which he < h < h,, are in a state of unloading. In 

this region we have an equation of motion and an equation of continuity 

Here v(lt, t) is the particle velocity, p,, and p(h) are the values of 

the initial density and the density after the shock-wave has passed. 

From the second equation of (2.2) we obtain 
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AlSO 

v (h, t) = g = 20 @) (2.4) 

and consequently the particle velocity is independent of the coordinate 
and is dependent solely on time. Making use of (2.41, we have from the 
first equation of (2.2) 

a@, q = P,&Y)(h- h,) + c(t) (2.5) 

In order to specify the wave completely it is necessary to know the 
functions x(h, t>, v(h, t), cr(h, t), p(h), I and h*(t). From the 
foregoing we see that it is sufficient to find the functions x,(t), C(t), 

h*(t) 
these 

a) 

h) 

c) 

We 

and p(h) and the remainder also will then be known. To determine 
four functions we have the four conditions: 

the stress on the plane h = h,, is given, 

the relation between strain and stress on the front (the com- 
pression diagram, 

and d) two mechanical conditions on the shock-front. 

shall show that these conditions are sufficient, and we shall find 
the solution which they give. It is natural for the external stress at 
the section h = h, to be specified as a function of time. Since the dis- 
tance h*(t) is also a function of time, and is in addition a monotonic 
function, we can suppose that the stress uO = ao(h,) is a known function 
of h *’ 

When the problem has been solved and all the elements of the motion 
have been found, including the function h*(t), u. will be known as a 
function of time, and it will then be clear for which loading law the 
problem has been solved. 

‘Ihe four conditions can be written in the form 

Q (h,, q = Q, (h*), Q (h*, t) = f (&*)I a (h,, q = P@*h*'2 

v(h*, t)= - E*k*' (2.6) 

'Ihe asterisks indicate quantities referring to the wave-front. 

Note that from the third and second equations of (2.6) it follows 
that 

f(F*) = Po"*h18 (2.7) 

?his relation defines E * = q4poht’2) as a single-valued function of 
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poh*” if the function ~(E*)/E* is monotonic. Eliminating the functions 

xO' C, p, we obtain in general a nonlinear first-order equation in the 

function h* r2 

lntegrating this equation, we obtain 

Whenever equation (2.8) can be reduced to a linear 

be integrated fairly easily. Let us consider the case 

ble to do so. Tntroducing the notation p&a* r2 = 5, we 

tion (2.8) to the form 

equation it can 

when it is possi- 

can reduce equa- 

Suppose that there exists a function o(L) such that the preceding 

equation can be written in the form 

c(i) 
dh, +--- ___ 

h (5) + 250 @*I = 0 

h, - ho h, - hu 

where A is an arbitrary constant. 

Then 

From this we obtain a differential equation for the function ~(5) 

‘lhe solution to this equation is 

cp (5) = CL’“‘, 
1” - 2 

nl = a 

In this way we obtain the following expression for the law of uni- 

axial compression: 

-- 
5 = f(s) =Cs A 

Thus, by replacing the required function, equation (2.8) can be re- 

duced to a linear first-order equation only when the diagram of uni- 

axial compression follows a power law. From now on we shall assume that 

the law of uniaxial compression is described by the function 
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f (&) = fy 1 .cJ J” (9, 12 - conat~, 5” < 0, n > 1) (2.9) 

‘Ihe power-law approximation for the compression diagram is valid, in 
general, for values of E which are not too small, and it should be 
remembered that the present theory can only be applied when the event 
under investigation follows the particular segment of the diagram for 
which the approximation is made. 

In the case of a function given in the form of (2.9), equation (2.8) 
becomes 

Since it is linear, this equation can be easily integrated. Its 
general solution is 

2% n, 

2 = C(h,-h,lz+ -&z,-~*)-~= \ 

h: 

Ash -t h,, the first term on the right-hand side becomes infinite, 
whilst Zhe second term remains finite. The particle velocity is finite 
(and is finite also at the initial instant) and the constant of integra- 
tion must therefore be zero. As a result we obtain 

1 W--l l--n 
2n 

H R-i-1 
2n CD (h,) (h, - h,)= (2.11) 

where 

‘lhe law governing the motion of the front with time is obtained in 
the form 

- 0 

t = (F$& (” z-1 f? \ 
n-1 

(h, - E);;“i CD-l (E) dE, 
h, 

From (2.7) the strain on the wave-front is given by 

-s*=(%)$ [a> (h,.+ (ho - h,)- n+ 

Knowing the function E(h), we can find p(h) from the formula 

(2.12) 

(2.13) 
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p,,ip(h) = 1 + E(h) and from the Euler coordinate of 
arbitrary instant of time 

IL 

the particle at an 

(2.14) 

‘Ihe velocity v(h, t) of a particle and the stress a(h, t) are given 
by formulas (2.5) and (2.6). For the stress we obtain 

Formulas (2.11) to (2.15) specify completely a wave generated by a 

stress applied at the section h p, Formula (2.12) enables us to express 

the function cr,(h*) as a function of time. From the results obtained 

we can draw the following qualitative conclusions: 

1. If the external stress acts even for a finite time, the wave-front 

still continues to propagate an infinite distance and for an infinite 

time with a velocity which decreases monotonically and tends asymptotic- 

ally to zero (we can only investigate the case of sufficiently high 

stresses on the wave-front). 

2. ?he stress a(h, t) varies linearly with the coordinate h between 

the front and the initial section. 

3. ‘Ihe particle velocity within this interval is constant, 

3. Reflection from an absolutely fixed obstacle. ‘be wave 

motion described in Section 2 will from now on be called an “incident 
wave” and quantities referring to this will be denoted by the suffix 1. 
lhe problem now is to determine the new wave motion generated on the 

collision of an incident wave with an obstacle. This new motion will be 

called a “reflected wave” and its parameters will be denoted by the 

suffix 2. 

In order to solve problems of nonlinear reflection, it is necessary 

to make certain assumptions beforehand concerning the properties of the 

solution. In this case we shall suppose that on reflection the stress 

increases, and that the reflected wave has a shock-front (Fig. 3). The 

region between the obstacle and the shock-front will be denoted by the 

Fig. 2. On the basis of these assumptions a particle in the path of the 

approaching reflected wave experiences a step-wise increase in stress 

(in accordance with the compression diagram) followed by an unloading 

phase. In the region (2), consequently, the following equations hold: 

as2 
-- 

ah 
(3.lj 
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The conditions on the fixed obstacle, which we shall assume to be at 
the origin of coordinates, are 

2T2 (0, t) = 0, 212 (0, t) = 0 (3.2) 

From the second equation of (3.1) we obtain 

2, (h, t) = ‘c podrl - + 220 (Q, 
i; PZW 

vz (h t) = 2'20 (q 

(3.3) 

Fin. 3. 

and by virtue of (3.2) we have that 

s,,(t) 3 0, v,(h,t) G 0 

Thus, particles in the region (2) remain fixed; this is in fact a 
region of no motion in which the particles do not all have the same 
density, but the stress, which varies with time, is the same for all 
particles. ‘Ihis conclusion follows from the first equation of (3.1), 
from which 

62 (h, t> = Qz @) (3.4) 

It now remains to determine the functions c,(t), p,(h), h,+(t); to 
do so we use two conditions on the shock-front and the compression 
diagram. lhe general f onn of the mechanical conditions on the shock- 
front is 

(D - V')P' = (D - %)Pz, CT'- 6, = (D-v,) p2(v2 - v’) 

Here the dashes denote values of the functions ahead of the front of 
the reflected wave; in what follows methods are given for their deter- 
mination. The velocity of propagation of the shock-front will be denoted 
by D. In the present case 

D = ~~2@2*) _ PO h I 
--z----- P2 (hz*) 2 ** 

v2 = 0 

Therefore the conditions on the shock-front can be written as 

vl=!?. “I-1 
( P’ P2* 

h’ 
2*9 a’--~~ = -po+($-I)h’,a* (3.5 ) * 

‘lllese must be supplemented by the compression law 

a, = aa P-3 (3.6) 

We proceed now to a consideration of the events which take place 
ahead of the reflected wave-front. At the instant of collision between 
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the front of the incident wave and the obstacle there extends a region 
ahead of the front of the just-formed reflected wave through which the 
incident wave has passed. ‘Ihe reflected wave propagates through an 
already disturbed state. The question arises as to whether it will in- 
duce ahead of itself some disturbance, or whether it will travel through 
the same state which was left by the incident wave. The answer to this 
question is related to the law of deformation of a particle which has 
undergone an unloading stage. According to our assumption (see the 
beginning of Section Z), a particle which has undergone unloading in the 
reflected wave will retain its density during repeated loading until the 
maximum stress ah, to which it was subjected on the front of the inci- 
dent wave, is reached (the point E: in Fig. 2). In this stage the dis- 
turbances are propagated with infinite velocity. Therefore, preceding 
the front of the reflected wave there must be another wave travelling at 
infinite (in practice very high) velocity. 

‘Ihe region ahead of the front of the reflected wave will be denoted 
by the Fig. 3, and related quantities by the suffix 3. In fact, this 
motion should also refer to the reflected wave. Let us determine the 
motion in the region (3). For this purpose we make a further assumption 
and equate the stress ET* preceding the shock-front of the reflected 
wave to the maximum* stress ub for a given particle. In the region (3) 
a particle does not undergo a change of density and therefore p3 = pl. 
Consequently 

whereas for the incident wave 

h 

Since the displacement 

This is an identity in 

is continuous, then in 

s,(k*, q = G(h,** 0 

t, and it follows that 

particular 

xQO(t) = nlO(t), i.e. 

-. - 

* The assumption that a’ = ab is an independent hypothesis in the sense 
that all the previously imposed conditions can be satisfied for any 
other choice of a*. The shock-nave would then be obviously unstable. 
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that the displacement field in the state (3) coincides with that in the 
state (1). In other words, the state ahead of the front of the shock- 
wave is not associated with the appearance of new displacements. Since 
the medium is incompressible, this does not mean that no new stresses 
are induced. ‘lhe equation of motion for state (3) is 

is 
Let u3 = u1 + us” where u1 is the stress in the incident wave, us’ 
the increase in stress. 

Since v3 = vl, and v1 and u1 satisfy equation (2.2), then obviously 

aaa’ 0 
x = , 

This leads to the following conclusion: in front of the reflected 
wave-front a stress is produced which is constant with respect to the 
coordinate but variable (in general) with time. Its magnitude is deter- 
mined by the condition that ahead of the front of the reflected wave 
the stress ob is reached. 

In order to determine the parameters of the reflected wave we set 

P’ = Pl (4, U’ = ur (t), o’ = ob (h) 

in equalities (3.5). 

As a result we obtain 

Eliminating the functions p,(h) and u,(t) from (3.6) and (3.7), we 
obtain 

I 
n 

cf - e, (ha,) - $- = bb + twM6, (3.8) 
2* 

From the third and fourth equations of (2.6) it follows that 

v1 = - e, (h,,) h;, = - - Ql @I*) 

Poh;, 

Equation (3.10) can therefore be reduced to the form 

1 (3.9) 

Integrating this nonlinear first-order equation with the initial 
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condition h,* (0) 
can then be 

= 0, we find the function h,*. ‘Ibe stress and density 
found from the formulas 

pz (h) = Pl (h) [I + p**j-l , 
2* 

t = t (h) E t (he*) (3.10) 

‘% (t) = 6b f/2) + PO% (t) &, (t), h = h(t) E Ii?,, (t) (3.11) 

In order to facilitate the integration of equation (3.91, we can re- 
place it approximately by another equation. From physical considerations 
we might expect that 

and with the aid of these inequalities we can expand the left-hand side 
of the equation in a series, retaining only the first two terms of the 
expansion; we then obtain 

Integration of this equation gives the 
following implicit relation between h,* and 
h : I+ 13.13) % 

h’ 9* 

\ , 
4, n-1 hl, n-1 ci I 81 (h) I -- 2 dh -t_ t/ii 1 fe, (h) 1 -- 2 dh = 0 

0 (1 

Fig. 4. 

An idea of the magnitude of the error introduced by replacing (3.9) 
by (3.12) is given in Fig. 4, in which the continuous line represents 
the relation between ho = h;*/h;* and sl’ = ~~(h~ )/~,(h,*) based on 
the exact formula (3.9), and the broken line reprgsents the same rela- 
tion given by formula (3.12). 

The calculations were carried out for two values of R. A clear inter- 
pretation of the quantities appearing in equation (3.91 (and in the sub- 
sequent equations) can readily be obtained by introducing a fictitious 
incident wave propagating beyond the obstacle. 
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Figure 5 shows a graph of stress in the reflected wave for a fixed 
instant of time and a graph of stress in the incident wave for the same 
instant of time on the assumption that there is no obstacle (Fig. 5, 
the broken line). 

The front of this fictitious wave determines the quantities II,* and 
~~(h~*), whereas the front of the reflected wave denotes a particle with 
a coordinate h,* and a value of El(h2t) corresponding to this particle. 

From the general results obtained the following conclusions can be 
drawn : 

a) the velocity of the front of the reflected wave is always greater 
than the velocity of the front of the fictitious incident wave; 

b) in accordance with the hypotheses made 

PZ>Pl, l%I>%l 

c) at the instant of reflection h 
give1 instant of time the ratio h;*/Q, 

= h,* = 0, and therefore for a 
= q can be found from the equa- 

tion 

(1 + 9-y = 1 + !I (3.14) 

Below are given values of q calculated for various values of n 

q= 1.0 1.5 2.0 2.5 3.0 

n-i.0 1.32 1.62 1.64 2.15 

Since at the instant of reflection u 1* = ub, we find from (3.11) that 

ba ( 1 T t=t, =Ifq 

‘Ihis ratio can be called the coefficient of reflection, and in the 
present formulation of the problem depends only on the properties of the 
medium (the exponent n) and is independent of the intensity of the in- 
cident wave. Since q > 1, the coefficient of reflection is greater than 
two ; 

d) the observer can imagine himself to be attached to a fixed 
particle and study the variation with time in its state of stress. 

‘Ihe foregoing analysis leads to the result shown in Fig. 6, where 
time is measured along the axis of abscissae and the stress in the 
particle along the axis of ordinates. 

Until the instant t = tp, the particle is in a state of rest, and at 
t = tp it is reached by the front of the incident wave. 
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‘lhe stress increases step-wise to ab, and then follows an unloading 

stage which lasts until the instant t = tO, is the instant of collision 
of the incident wave with the obstacle. 

Fig. 5. Fig. 6. 

At this same instant the “forerunner” of the reflected wave reaches 

the particle (its velocity of propagation is infinite). Its intensity 

increases from zero (since at the obstacle ab = al*). 

‘lhe stress in the particle continues to increase and by the instant 

t = t, of the arrival of the front of the reflected wave reaches once 
more the value ub. 

As the front passes, the stress again increases step-wise. Starting 

from this instant the particle becomes fixed and the stress decreases 

with time. 

4. Particular cases of loading. a) Suppose that the external 

stress o,,(hl,) instantaneously reaches the value uO and thereafter re- 

mains constant; in other words, suppose that the application of the 

given loading follows a step law. In this case the functions defining 

the incident and reflected waves also have a step-like character. ‘Ibe 

constant values of these functions can easily be found from the preced- 
ing formulas. For the incident wave we find that in this case 

1 

( 1 
n 

%, = --, ;: p1= [I- (+$-l, q(h, t) = is, 
PO 

For the reflected wave 

hz; = - qhl’,, h,, = - qhl, 

p; (h) = pop-q+ (gyl, % (q = (I + 9) 00 

where q is the positive root of equation (3.14). 

b) Suppose that the given stress suddenly assumes a constant value uO 
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and after a finite interval of time (after the front has travelled a 

finite distance 1 from the initial section) suddenly becomes zero once 

more, so that 

( 0 (hl.>hO) 

Qo @,*I = 

I 

30 (ho - I< hl, < ho) 

0 @I, <ho - 0 

?he incident wave can then be defined by the following functions 

The last five formulas apply for II,, < h, - 2. For h, - 1 < h,* < h, 

the stress remains constant and the wave generated is the same as the 

wave in example (a) (it has constant parameters). lhe formulas given 

above show that the front velocity, the deformation, the density, and 

the stress on the front decrease monotonically with the propagation. 

Let us now consider the reflected wave. 

From (3.12) we obtain 

,‘-1 

it,: = - v/n (-f+)“” h: = H (A)@ 
- 

H = Y;;(z$)t (gy fj=n-i 
n+f (4.1) 

It follows from (4.1) that the velocity of the front of the reflected 

wave increases with increase in its distance from the obstacle.‘Ihis is 

explained by the fact that as it propagates, the reflected wave passes 

through a medium the density of which is constantly increasing. 

‘Ihe velocity of the reflected wave-front varies from a value H(Z/h,)’ 

at the obstacle to a value H at II,* = h, - 1. 

‘lk density p,(/l) also increases with h. In fact 

PZ (h) FI 

PO = 9 Flvl /h’z. 

Finally, the magnitude of the step in the stress on the wave-front 
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is given by 

2n n-i 

62 - bb = P (h, - h2*)_ isi (4.2) 

5. Reflection of a plane wave from a massive obstacle. In 

accordance with the conditions of a plane wave, we shall assume that 
the obstacle is bounded by two parallel planes. Without restricting the 
generality, we shall assume that the obstacle is an infinitely thin 
plate possessing an infinite surface density. 

Suppose that the wave strikes the plate normally. As a result of the 
collision with the incident wave the plate is set in motion, and on the 
other side of the plate a new wave motion is generated - a transmitted 
wave. 

Let us restrict the problem and study the phenomenon for a time inter- 
val which is sufficiently small for us to be able to make the following 
assumptions: 

1) the stress is higher in the reflected wave than in the incident 
wave (there exists a shock-front in the reflected wave); 

2) the plate moves in one direction (in the direction of propagation 
of the wave); 

3) as a result of its motion the plate generates a compression wave 
which produces a monotonically increasing stress on the boundary plane. 

These assumptions are hypotheses the validity of which can be checked 

in an actual derivation of a solution. 

‘lhe intensity of the wave generated behind the obstacle will depend 

on the parameters of the incident wave and the mass of the obstacle. 

Let us first consider the case when 
can be described by the linear theory. 
sufficiently massive obstacle. 

the transmitted wave is weak and 
This will be the case for a 

For the region of the transmitted wave, which we will denote by the 
suffix 4, we can write down the fallowing relations: 

o4 = ke4, k=h+2p (h, p-are Lamk parameters) 

Consequently, the displacement uI satisfies the equation 
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For the transmitted wave propagating in the direction of the negative 

axis, we have 

UP (k t) = f @ + at) 

It is required to define the reflected and transmitted waves and the 
motion of the obstacle, 

In order to determine the required functions we have the following 
conditions: 

on the reflected shock-wave 

on the obstacle fh = 0) 

x4 (0, t) = 220 (0, t) = u (Q, v, (h, t) - Z2f)’ (t) = U’ (t) 

The r,lotion of the obstacle is governed by the equation 

6, (0, t) = 44 (0, C) = MU” (8) 

Here !A, U are the mass and displacement of the obstacle. As before, 
for the reflected wave we have 

The velocity D of the reflected shock-wave is given by the relation 

These nine equations enable us to determine the functions 

The conditions on the shock-wave can be written in the form 

Vl -Vg=(;-E)ha;, bb---&=-&,h&+v~) (5.2) 

Since po/pz - po/pl = Ed - Ed, and on the shock-front a2 = cfol&,I”, 
we obtain from (5.2) 

81 (h,,) - -y2 
1 

n + 6b = &,hz: (v2 - VI) 

2* 
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For the particle velocity in the incident wave we have 

P, = - El (h,,) h,; = - - Q lhl*> 
Po$; 

Therefore 

or, bearing in mind that 

,a0 [-- 81 &,*)I“ = Qb 
n I 

1 81 (hl,) hl* v-2 I 1 Q* h2, poh2;vz ..-....--- 
&I (hzd h,; 

= --_-- 
mo*)& ‘b hl; ‘b a 

Expressing the stress ratio al*/ob in terms of the ratio of the cor- 
responding strains and rearranging, we obtain finally 

( pzs+ v2 
El&*w;* 

=t-Yz) (5.3) 

This is a nonlinear first-order differential equation in the unknown 
function hi, ; it is similar to equation (3.9) and differs only in the 
multiplier p, which depends on the unknown particle velocity in the re- 
flected wave. ‘II-MS equation (5.3) contains two unknown functions, and in 
order to solve the problem a further equation is needed, Ihis will be 
provided by the so far unused equation of motion of the obstacle. 

In order to determine the function ~~(0, t) we make use of (5.3)) 
bearing in mind that U’ = u2. ‘Then 

o, (0, t) = oh - p& (& - VI) - I_JL*Z~~ 

From (5.1) the stress a4(h, t) is given by 

At the obstacle this stress is 

o4 (0, t) = kj’ (at) = ; 2’2 

As a result the equation of motion of the obstacle in expanded form 
becomes the following linear first-order differential equation in up: 

k I a + Poh,; 
I 

P(t) = 
Gb -!- poh2pl 

M + poJGL* ’ Q ft) = ICI + pohg* 

The solution to this equation, which vanishes at the instant of 
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collision of the incident wave with the obstacle (at t = to), is 

This formula can be easily rewritten as follows: 

Equations (5.3) and (5.4) together determine both the unknown func- 

tions h, * and v2. Elimination of v2 leads to a single integro-differ- 

ential equation in h,*/h,*. When h,* and v2 are known the remaining un- 

known functions can be easily expressed in terms of them. 

For instance, the pressure of the reflected wave on the obstacle is 

given by 

The values of the required functions at the instant of reflection 

(at t = to) can be found simply. At t = to we have h,* = h,* = 0, v2=0, 

p = 1. Therefore, from (5.3) we obtain h;*/h;* = q, where q is the root 

of equation (3.14), and 7 > 1. 

For the coefficient of reflection we obtain from (5.5), by setting 

t = to, the expression 

0, (0, t) / $ = 1 -+ (I 

This is the same result as for a fixed obstacle. ‘lhe explanation lies 

in the fact that at the instant t = t,, the obstacle is stationary. lhe 

stress ~~(0, t) on the rear face of the obstacle varies in the same way 

as the velocity of the obstacle, which follows from the formula 

44 (0, t) = x-v, / a 

Formulas (5.3) to (5.5) show that the hypotheses made concerning the 

nature of the phenomenon are justified for a certain finite interval of 
time after the instant of reflection. In order to solve equations (5.3) 

and (5.4) in their exact form we have to resort to numerical methods. 
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However, as in Section 4, we can adopt the method of replacing equa- 

tion (5.3) by a simpler approximate expression. From physical consider- 

ations it is clear that 0 <p < 1 and 

Assuming, therefore, that 

we expand the left-band side of equation (5.3) into a power series and 

retain two terms only. As a result we obtain 

h ’ 2* -, = 
h 1* 

In this approximation we see that the same law results in this case 
as in the case of a fixed obstacle. 

Finally, let us study in more detail the particular case when the 

incident wave is in the form of a step (Section 4, example (a)). The 

basic formulas are then very much simplified, and if one further approxi- 

mation is made, the problem can be solved in an explicit and simple form. 

We are then able as a particular typical example to investigate the in- 

fluence of a massive obstacle on the readings of strain- or velocity- 

gauges attached to the obstacle. In this way the results obtained can be 

applied to the theory of instruments used for measuring stress and 

particle velocity in the propagation of waves in soils. The present 

formulation of the problem for plane waves does not, of course, take 

account of the phenomenon whereby a wave “bypasses” an obstacle, which 

occurs in actual practice. 

Suppose an incident wave in the form of a step strikes an obstacle; 

then 

61 (h, t) = o,, 6b = 6, 

--T 

h,; = - 1/-$ (p , el* (h) = - ($)” 
Since ~~(h~,)/s~(h~,) = 1, eqalltion (S.3) can be written in the 

simplified form 

(1 -Q!$‘= 1 _p$ 
a* 

( p=1-;, v,=const) 
1* 

‘Ibe relation between h;*/h;*and f3 can be expressed in parametric 
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f orm, which is convenient for the graphical solution of the equation 

Fig. 7. 

and equal to q (to its value at t = to). 

h’ z”_+ 
3* _.-., = 

)5* ( ) Z-l 

p ;= \ (z"-1)(2-l) 

In Fig. 7 this relation is 

shown graphically for n = 1.5 

and n = 2.0. We see that for 

O,<p,<l the ratio h;*/h;* 

varies only very slightly 

(within approximately 10%). 

Illis ratio can therefore be 

taken as approximately constant 

This assumption enables us to 

obtain an expression for the stress ~~(0, t) and the velocity v2 in a 

final simple form. We introduce the nondimensional quantities 

Formula (5.41 then yields 

v,=+;+&[1-(l-t_qCr) 
- (1+$) 

I (5.6) 

For the velocity V, in the incident wave we obtain 

I+;+ 
, 

‘Ihe obstacle is set into 

motion with a speed monotonic- 

ally increasing from zero and 

tending with time to the limit- 

ing value 

a0 1+q -- 
k 1 SPC 

For C > 1 this limiting value is greater than ul, and for C < 1 it is 

smaller. Formula (5.6) is interpreted graphically in Fig. 8 for values 

of qC = 1.5, 2, 3, 4, where p = kV.JaO(l +q). 

From (5.5) the pressure of the incident wave on the obstacle is given 

a1 (0, t) 1+q ~_qw--r) 
-=1$-gcs i [I - (1 +Pw 

-(1+$ \ 
60 1 fqC 1 1 (5.7) 
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flence we see that at the instant of collision of the incident wave 
with the obstacle the stress instantaneously attains the value ~~(1 + if), 
as in the case of a fixed wall, and then decays. ‘&en 

This limiting value is less than u0 if C > 1; if C < 1 the limiting 
value is greater than co. The results of calculations based on formula 

Fig. 9. Pig. 10. 

(5.7) for values of qC = 1.5, 2, 3, 4 are shown in Fig. 9, where 

I.laking use of formula (5.7) and the relation 

6, (h, t> = 6% (0, t) + pod$ f7 

we can determine the stress at the front of the reflected wave: 

!3y differentiating equation (5.6) we obtain the acceleration which 
the obstacle experiences during its motion. For the nondimensional 
derivative we obtain 

The results of calculations based on this formula are given in Fig. 
10, where 



Reflection of a Plastic wave fror an obstacle 145 

This derivative is connected to the true acceleration by the relation 

dva k dVz” 

Tt=Rdz 

The maximum acceleration occurs at the instant of collision of the 
incident wave with the obstacle, when it has the (absolute) value 

It is expedient to express this acceleration in multiples of the 

acceleration g due to gravity : 

60 (1 + 9) w= M 

W 
-=$(l+q) 
g 

where Q is the weight of the obstacle per unit area. 

It should be remembered that formulas (5.6), (5.7) and (5.8) were 

derived on the assumption that the medium deforms linearly (during load- 

ing), that the stress on the front of the reflected wave is greater 
than that on the incident wave, and that in the transmitted wave unload- 
ing has not contnenced. In particular, the condition u2(h2*, t) > u,, can 

be written with the aid of formula (5.81, which requires that 

The value of T,, corresponds to the instant at which the reflected 

shock wave disappears. Note that at this instant the velocity up of the 

obstacle becomes equal to the particle velocity v1 in the incident wave. 

lhe motion when C < 1 cannot be investigated in the present study, 

since it was assumed that the incident wave travels through an undis- 

turbed medium. If C < 1, an elastic wave must precede the plastic wave. 

This case requires a special investigation. Other conditions governing 

the applicability of the theory must be considered for each specific 
problem. 
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